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An efficient method for the synthesis of 6-alkyl or 6-aryl
purines (nucleosides) was developed via nickel-catalyzed
Negishi cross-couplings of 6-chloropurines and organozinc
halides. The ligand-free process gave good to excellent iso-
lated yields at room temperature.

Cross-coupling reactions of organometallic reagents, such as
Suzuki–Miyaura, Kumada, Negishi, and Stille reactions, are
one of the most direct methods for constructing carbon–carbon
bonds in organic synthesis.1 Among all the coupling reactions,
the Negishi reaction has developed to be a powerful tool for
the preparation of many chemical and pharmaceutically active
compounds due to its compatibility with various functional
groups, high chemoselectivity and the excellent stereoselectivity
of organozinc reagents, and the easy preparation of a wide variety
of organozinc halides (RZnX) and diorganozincs (R2Zn).1c,2 This
reaction is usually catalyzed by nickel or palladium complexes,
and ancillary ligands are usually needed to sufficiently enhance the
reactivities of the palladium and nickel catalysts.1b Many kinds of
Pd- or Ni-catalyzed Negishi cross-coupling reactions, involving
aryl–aryl, aryl–alkenyl, aryl–alkyl and alkyl–alkyl, have been
reported3,2d in the presence of some ancillary ligands. So studies
have focused on the ancillary ligands4,1b, and some special ligands
have been designed to extend the scope of substrates.5 In view of
the high cost of the palladium precursors, inexpensive nickel has
certainly received researcher’s attention from the very beginning.

Azaarenes, the core unit existing in some natural products or
drugs such as purine and pyrimidine derivatives and so on, have
been extensively studied because they have a variety of biological
activities. Studies on the synthesis and modification of azaarenes
are very important and significant in research as well as in industry.
Among these studies, cross-coupling reactions of organometallic
reagents are applied incisively and prominently as a promising re-
search direction of huge synthetic potential.1,3,6,7 However, almost
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all the Negishi cross-coupling reactions for azaarenes–alkyl, such
as purine, pyrimidine, pyridine and pyrazine compounds, were
catalyzed by palladium with some ligands by employing heteroaryl
bromide, iodide8 and chloride9 as starting material. Only Walters
et al.10 reported that the cross-coupling reaction of alkylzinc
halides and chloropyrazine could be catalyzed by NiCl2(dppp). In
other words, there are almost no studies of Ni-catalyzed cross-
coupling reactions of azaarenes. To fill this need, and during
the ongoing course of our study on the modification of purine
analogues,11 we report herein the Negishi cross-coupling reactions
of 6-chloropurines with organozinc halides catalyzed by Ni(acac)2.

As a model reaction, the cross-coupling reaction of 9-benzyl-
6-chloropurine (1a) and benzylzinc bromide (2a) was selected
to screen the catalysts and optimize the reaction conditions.
Different catalysts, including Pd or Ni catalysts, were initially
studied at room temperature (Table 1, entries 1–7). The activity
of the Ni-catalysts were higher than that of the Pd-catalysts,
and nickel acetylacetonate (Ni(acac)2) gave the best results,
affording the cross-coupling product 3a in 96% yield (entry 7).
The further optimization of reaction conditions showed that the
cross-coupling product 3a was obtained in almost quantitative
yields at lower benzylzinc bromide (1.5 eq) and Ni(acac)2 loadings

Table 1 Optimization of the cross-coupling reaction conditionsa

Entry Catalyst (mol%) 2a (equiv) Time (h) Yield (%)b

1 Pd(PPh3)4 (10%) 3 18 62
2 PdCl2 dppf (10%) 3 18 40
3 PdCl2 (10%) 3 18 66
4 NiCl2(PPh3)2 (10%) 3 18 65
5 NiCl2 dppp (10%) 3 12 84
6 NiCl2 (10%) 3 18 69
7 Ni(acac)2 (10%) 3 10 96
8 Ni(acac)2 (5%) 1.5 20 98
9 Ni(acac)2 (2%) 1.5 24 91
10 — 1.5 24 0

a Reaction conditions: 1a (0.1 mmol), THF (1 mL). b Isolated yield based
on 1a.
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Table 2 The cross-coupling reaction of 6-chloropurines with benzylzinc
bromidea

Entry 6-Chloropurines Product Yield (%)b

1 98

2 97

3 98

4 80

5 78

6c 50

7 75

8c 65

a Reaction conditions: 1b–g (0.1 mmol), 2a (0.15 mmol), Ni(acac)2 (0.005
mmol), THF (1 mL). b Isolated yield based on 1. c 2a (0.3 mmol) was used.

(5%) (entries 7–9). These encouraging results indicated that
Ni(acac)2 without any ancillary ligand was an effective catalyst
for Negishi coupling reactions of 9-benzyl-6-chloropurine and
benzylzinc bromide.

Next, to evaluate the generality of the reaction, a number of
6-chloropurines with various substituents at N9, including alkyl
and sugar carbon substituents, were subjected to the optimized
reaction conditions (Table 2). N9 alkyl or tetrahydropyranyl
(THP) substituted purines proceeded smoothly in more than

Table 3 The cross-coupling reaction of 9-benzyl-6-chloro-purine with
various alkylzinc halidesa

Entry R1–ZnX Product Yield (%)b

1 98

2 92

3 80

4 71

5 76

6 40

7 37

a Reaction conditions: 1a (0.1 mmol), 2a–2f (0.15 mmol), Ni(acac)2 (0.005
mmol), THF (1 mL). b Isolated yield based on 1a.

97% yields (entries 1–3). And to our delight, 2¢,3¢,5¢-triacyl-
6-chloropurine nucleoside gave the corresponding product in
80% isolated yield (entry 4), providing a useful access for the
preparation of purine nucleoside analogues. More meaningfully,
the cross-coupling reactions employing acetyl protected 2,6-
dichloropurine nucleoside were able to selectively produce 6-
benzyl-2-chloropurine nucleoside 3f and 2,6-dibenzylpurine nu-
cleoside 3h just by changing the quantity of benzylzinc bromide
(entries 5–6).12 Acyclovir side chain protected 2,6-dichloropurine
1g gave the same results (entries 7–8).

Other alkylzinc halides were also subjected to the reaction under
the optimized conditions (Table 3). As expected, primary alkylzinc
halides, such as benzylzinc 2a, methylzinc 2b, and pentylzinc 2c,
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Table 4 The Negishi cross-coupling reaction of 9-benzyl-6-chloro-purine
with arylzinc iodidea

Entry Ar Product Yield (%)b

1 5a 83

2 5b 84

3 5c 82

4c 5d 89

5 5e 86

a Reaction conditions: 1a (0.1 mmol), 4a–4e (0.15 mmol), Ni(acac)2 (0.005
mmol), THF (1 mL). b Isolated yield based on 1a. c Catalyzed by 5 mol%
of Ni(acac)2 and 5 mol% of dppp.

produced the corresponding products in good to excellent yields
(entries 1–3). Cyclic alkyl zinc bromides, involving cyclopentylzinc
2d and cyclohexylzinc 2e, also gave the desired products in
satisfactory yields (entries 4, 5). However, isopropyl zinc bromide
2f gave a mixture of 3n and 3o, a rearrangement product of 3n
(entries 6, 7).

In order to test if the arylzinc halides could be used as substrates
for the reaction, we tried to synthesize a series of arylzinc halides.
Because arylzinc bromides were obtained in very low yields, we at
last chose arylzinc iodides as the substrates. As shown in Table
4, a series of 6-arylpurines were successfully synthesized from
the corresponding arylzinc iodides in high yields (entries 1–5).
Functional groups attached to the arylzinc iodides, such as CH3,
OMe, and COOMe, were well tolerated.

In summary, we have established that Ni(acac)2 can efficiently
catalyze Negishi cross-coupling reactions of 6-chloropurines with
alkyl or aryl zinc halides under ligand-free conditions at room
temperature. To the best of our knowledge, this is the first process
that is conducted under ligand-free conditions among all the Ni-
or Pd-catalyzed Negishi cross-couplings. This process provides
a novel economically efficient approach to the modification of
purine nucleoside compounds and enriches the methodology of
Negishi cross-coupling reactions.
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